3,435 research outputs found

    Toward quantification of strain-related mosaicity in shocked lunar and terrestrial plagioclase by in situ micro-X-ray diffraction

    Get PDF
    Studies of shock metamorphism of feldspar typically rely on qualitative petrographic observations, which, while providing invaluable information, can be difficult to interpret. Shocked feldspars, therefore, are now being studied in greater detail by various groups using a variety of modern techniques. We apply in situ micro-X-ray diffraction (μXRD) to shocked lunar and terrestrial plagioclase feldspar to contribute to the development of a quantitative scale of shock deformation for the feldspar group. Andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada, and anorthite from Earth's Moon, returned during the Apollo program, were examined using optical petrography and assigned to subgroups of the optical shock level classification system of Stöffler (1971). Two-dimensional μXRD patterns from the same samples revealed increased peak broadening in the chi dimension (χ), due to strain-related mosaicity, with increased optical signs of deformation. Measurement of the full width at half maximum along χ (FWHMχ) of these peaks provides a quantitative way to measure strain-related mosaicity in plagioclase feldspar as a proxy for shock level

    Shock effects in plagioclase feldspar from the Mistastin Lake impact structure, Canada

    Get PDF
    Shock metamorphism, caused by hypervelocity impact, is a poorly understood process in feldspar due to the complexity of the crystal structure, the relative ease of weathering, and chemical variations, making optical studies of shocked feldspars challenging. Understanding shock metamorphism in feldspars, and plagioclase in particular, is vital for understanding the history of Earth's moon, Mars, and many other planetary bodies. We present here a comprehensive study of shock effects in andesine and labradorite from the Mistastin Lake impact structure, Labrador, Canada. Samples from a range of different settings were studied, from in situ central uplift materials to clasts from various breccias and impact melt rocks. Evidence of shock metamorphism includes undulose extinction, offset twins, kinked twins, alternate twin deformation, and partial to complete transformation to diaplectic plagioclase glass. In some cases, isotropization of alternating twin lamellae was observed. Planar deformation features (PDFs) are notably absent in the plagioclase, even when present in neighboring quartz grains. It is notable that various microlites, twin planes, and compositionally different lamellae could easily be mistaken for PDFs and so care must be taken. A pseudomorphous zeolite phase (levyne-Ca) was identified as a replacement mineral of diaplectic feldspar glass in some samples, which could, in some instances, also be potentially mistaken for PDFs. We suggest that the lack of PDFs in plagioclase could be due to a combination of structural controls relating to the crystal structure of different feldspars and/or the presence of existing planes of weakness in the form of twin and cleavage planes

    Reflections on the scope and the future of Particle and Fibre Toxicology

    Get PDF
    Within 5 years of its first publication in December 2004, Particle and Fibre Toxicology has become a well recognized open access, peer-reviewed, online journal with an (unofficial) impact factor of 5.5. This major achievement is due to the dedication of former Editors-in-Chief Professors Ken Donaldson and Paul Borm, and, of course also due to the high quality of manuscripts that have been submitted by authors from all over the world. Recent years have shown a significant increase in papers dealing with nanomaterials and nanotoxicology, whilst the small margin between ambient PM exposure and current standards continues to provide a constant flow of manuscripts on this topic. This however, does not imply that we can relax now.</p

    RSRA vertical drag test report

    Get PDF
    The Rotor Systems Research Aircraft (RSRA), because of its ability to measure rotor loads, was used to conduct an experiment to determine vertical drag, tail rotor blockage, and thrust augmentation as affected by ground clearance and flight velocity. The RSRA was flown in the helicopter configuration at speeds from 0 to 15 knots for wheel heights from 5 to 150 feet, and to 60 knots out of ground effect. The vertical drag trends in hover, predicted by theory and shown in model tests, were generally confirmed. The OGE hover vertical drag is 4.0 percent, 1.1 percent greater than predicted. The vertical drag decreases rapidly as wheel height is reduced, and is zero at a wheel height of 6 feet. The vertical drag also decreases with forward speed, approaching zero at sixty knots. The test data show the effect of wheel height and forward speed on thrust, gross weight capability, and power, and provide the relationships for power and collective pitch at constant gross weight required for the simulation of helicopter takeoffs and landings

    Video Guidance, Landing, and Imaging system (VGLIS) for space missions

    Get PDF
    The feasibility of an autonomous video guidance system that is capable of observing a planetary surface during terminal descent and selecting the most acceptable landing site was demonstrated. The system was breadboarded and "flown" on a physical simulator consisting of a control panel and monitor, a dynamic simulator, and a PDP-9 computer. The breadboard VGLIS consisted of an image dissector camera and the appropriate processing logic. Results are reported

    Evolution of precipitates, in particular cruciform and cuboid particles, during simulated direct charging of thin slab cast vanadium microalloyed steels

    Get PDF
    A study has been undertaken of four vanadium based steels which have been processed by a simulated direct charging route using processing parameters typical of thin slab casting, where the cast product has a thickness of 50 to 80mm ( in this study 50 mm) and is fed directly to a furnace to equalise the microstructure prior to rolling. In the direct charging process, cooling rates are faster, equalisation times shorter and the amount of deformation introduced during rolling less than in conventional practice. Samples in this study were quenched after casting, after equalisation, after 4th rolling pass and after coiling, to follow the evolution of microstructure. The mechanical and toughness properties and the microstructural features might be expected to differ from equivalent steels, which have undergone conventional processing. The four low carbon steels (~0.06wt%) which were studied contained 0.1wt%V (V-N), 0.1wt%V and 0.010wt%Ti (V-Ti), 0.1wt%V and 0.03wt%Nb (V-Nb), and 0.1wt%V, 0.03wt%Nb and 0.007wt%Ti (V-Nb-Ti). Steels V-N and V-Ti contained around 0.02wt% N, while the other two contained about 0.01wt%N. The as-cast steels were heated at three equalising temperatures of 1050C, 1100C or 1200C and held for 30-60 minutes prior to rolling. Optical microscopy and analytical electron microscopy, including parallel electron energy loss spectroscopy (PEELS), were used to characterise the precipitates. In the as-cast condition, dendrites and plates were found. Cuboid particles were seen at this stage in Steel V-Ti, but they appeared only in the other steels after equalization. In addition, in the final product of all the steels, fine particles were seen, but it was only in the two titanium steels that cruciform precipitates were present. PEELS analysis showed that the dendrites, plates, cuboids, cruciforms and fine precipitates were essentially nitrides. The two Ti steels had better toughness than the other steels but inferior lower yield stress values. This was thought to be, in part, due to the formation of cruciform precipitates in austenite, thereby removing nitrogen and the microalloying elements which would have been expected to precipitate in ferrite as dispersion hardening particles

    Contrast-enhanced ultrasound identifies early extrahepatic collateral contributing to residual hepatocellular tumor viability after transarterial chemoembolization.

    Get PDF
    The mainstay of treatment for unresectable hepatocellular carcinoma is locoregional therapy including percutaneous ablation and transarterial chemo- and radioembolization. While monitoring for tumor response after transarterial chemoembolization is crucial, current imaging strategies are suboptimal. The standard of care is contrast-enhanced magnetic resonance imaging or computed tomography imaging performed at least 4 to 6 weeks after therapy. We present a case in which contrast-enhanced ultrasound identified a specific extra-hepatic collateral from the gastroduodenal artery supplying residual viable tumor and assisting with directed transarterial management

    Editorial: dose-dependent ZnO particle-induced acute phase response in humans warrants re-evaluation of occupational exposure limits for metal oxides

    Get PDF
    Epidemiological studies link inhalation of particles to increased risk of cardiovascular disease. Inhaled particles may induce cardiovascular disease by several different mechanisms including translocation of particles to systemic circulation, activation of airway sensory nerves resulting in autonomic imbalance and particle-induced pulmonary inflammation and acute phase response.The acute phase response is the systemic response to acute and chronic inflammatory states caused by for example bacterial infection, virus infection, trauma and infarction. It is characterized by differential expression of ca. 50 different acute phase proteins including C-reactive protein and Serum amyloid A, which are the most differentially up-regulated acute phase response proteins. Blood levels of these two acute phase proteins are closely associated with risk of cardiovascular disease in epidemiological studies and SAA has been causally related to the formation of plaques in the aorta in animal studies.In a recent paper in Particle and Fibre Toxicology, Christian Monsé et al. provide evidence that inhalation of ZnO nanoparticles induces dose-dependent acute phase response in humans at dose levels well below the current mass-based occupational exposure limits in a number of countries including Germany, The Netherlands, UK, Sweden, Denmark and the US.Given the evidence suggesting a causal relationship between increased levels of serum amyloid A and atherosclerosis, the current results call for a re-evaluation of occupational exposure limits for a number of particle exposures including ZnO taking induction of acute phase response into account. Furthermore, it underscores cardiovascular disease as an occupational disease

    RSRA sixth scale wind tunnel test. Tabulated balance data, volume 2

    Get PDF
    Summaries are presented of all the force and moment data acquired during the RSRA Sixth Scale Wind Tunnel Test. These data include and supplement the data presented in curve form in previous reports. Each summary includes the model configuration, wing and empennage incidences and deflections, and recorded balance data. The first group of data in each summary presents the force and moment data in full scale parametric form, the dynamic pressure and velocity in the test section, and the powered nacelle fan speed. The second and third groups of data are the balance data in nondimensional coefficient form. The wind axis coefficient data corresponds to the parametric data divided by the wing area for forces and divided by the product of the wing area and wing span or mean aerodynamic chord for moments. The stability axis data resolves the wind axis data with respect to the angle of yaw

    RSRA sixth scale wind tunnel test

    Get PDF
    The sixth scale model of the Sikorsky/NASA/Army rotor systems research aircraft was tested in an 18-foot section of a large subsonic wind tunnel for the purpose of obtaining basic data in the areas of performance, stability, and body surface loads. The model was mounted in the tunnel on the struts arranged in tandem. Basic testing was limited to forward flight with angles of yaw from -20 to +20 degrees and angles of attack from -20 to +25 degrees. Tunnel test speeds were varied up to 172 knots (q = 96 psf). Test data were monitored through a high speed static data acquisition system, linked to a PDP-6 computer. This system provided immediate records of angle of attack, angle of yaw, six component force and moment data, and static and total pressure information. The wind tunnel model was constructed of aluminum structural members with aluminum, fiberglass, and wood skins. Tabulated force and moment data, flow visualization photographs, tabulated surface pressure data are presented for the basic helicopter and compound configurations. Limited discussions of the results of the test are included
    corecore